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TECHNICAL PAPER

AN EFFICIENT ALGORITHM FOR GENERATING RANDOM NUMBER PAIRS
DRAWN FROM A BIVARIATE NORMAL DISTRIBUTION

INTRODUCTION

An efficient algorithm was devised to generate random numbers drawn from a bivariate normal dis-
tribution with any desired values of the two means, two standard deviations, and correlation coefficient.
A sequence of pairs of uniformly distributed random numbers are transformed to obtain a sequence of
random number pairs which are bivariate normally distributed. The only accuracy limitations are in the
quality of the uniform random number generation routine, and in the ability of the computer to perform
exact calculations.

The present technique is a special case of a general method described by Scheuer and Stoller [1]
who devised a method for generating sequences of random n-vectors drawn from a multivariate normal
distribution with any desired covariance matrix. For an n-vector a sequence of n independent normal variates
was generated. A linear transformation was applied to each of the n-vectors of the sequence, and the result
was a sequence with the desired properties. Since the transformation was linear the transformed sequence
was also linear, but the vector components are no longer uncorrelated. By judicious selection of the trans-
formation matrix, the desired covariance matrix was obtained. For the present case, the linear transforma-
tion involves multiplication by scale factors and rotation.

MATHEMATICAL DEVELOPMENT

The bivariate normal density function with zero means is given by:

. 2 2
£y (5¥) = exp Xy (v b m
’ 2m oy oy\/ 1-12 2/1-12 °x2 Ix Oy oy2
where
2 2
o4 =E(X*)
0y* = E(y?)

r= E(xy)/axay

and E( ) means the expected value of the variable in parenthesis. The means can be set to zero without loss
of generality because transforming to variables with nonzero means involves a simple addition.



The basis for the algorithm is the generation of a sequence of independent normally distributed
random pairs (x',y") (being independent the correlation coefficient r is equal to zero) which are transformed
to obtain a new sequence (X,y) which is normally distributed with the desired standard deviations and
correlation coefficients. For nonzero means, the desired means are then added to each pair (x,y). Because
rotation, multiplication by scale factors, and addition constitute a linear transformation, the resulting pairs
will be normally distributed. Any desired method of generating (x',y’) can be used, but for convenience, a
method described by Box and Muller [2] was utilized. Other methods involving the central limit theorem
and rational approximation would be acceptable. Some of these techniques are described by Howell and
Rheinfurth [3]. Rheinfurth [4] has also pointed out that the Box and Muller method may have some
nonzero values of serial correlation possibly resulting from function evaluation errors or other computer
arithmetic inaccuracy, Ih any event any normally accepted method for generating random normal deviates
should work for the current algorithm.

The technique of Box and Muller generates a pair of independent normal deviates by means of the
following transformation:

x''= (—21nu1)'1/2 sin 27 uy
2

y' = (—21nu1)'1/2 cos 2m uy

u; and uy are a pair of random variates uniformly distributed between 0 and 1. The inverse transforma-

tions are given by:

u; = exp[-(x"2 +y""2)/2]

3)

uy = arc tan &' x"M@2n)
The Jacobian of these inverse transformations is:

Ty u/x"y")] = =2 [‘("2'7;2 +y" /2] @)
The joint distribution of x'' and y"' is given by:

ey ("Y' = ful,u2 J[(u1,u 2", y"] )
or

£ (3" 5" = 1/(+/27) exp(-x"2/2) 1/(y/2m) exp(=y"?[2) . 6)



From the above equation it is obvious that x'’ and y'’ are independent normally distributed variables with
zero means and unit standard deviations.

The transformations in theory are exact. In practice computer errors of arithmetic, function evalua-
tion, etc. create some inaccuracies which are believed to be small.

Equation (2) generates a sequence of normally distributed random number pairs. Transformation to
the desired sequence requires three simple operations. The first is the multiplication given in the following
equation:

XI = Ux' xll
N
yr - Oy' yn
The standard deviations of x' and y’ are o+ and oy’ respectively. The actual values of o+ and oy’ are yet

to be determined.
The next transformation is a rotation. Figure 1 illustrates the problem. x and y are given by the
rotational transformation:

x=x"cosf -y'sinf (8a)

y=x"sing +y' cos8 . (8b)

Figure 1. Rotation of axes transformation.




The inverse transformation is:
x'=x cosf +ysin 6 (9a)
y'=—xsinf +ycosd . (9b)
Multiplying (9a) by (9b) and taking expected values gives:
Oy’ Oyt r'= (oy2 - oxz) cos § sin 6 +oy gy T (cos§ ~sind) . (10)

r' is the rotated correlation coefficient and is therefore zero. With the left hand side of (10) set to zero the
equation can be solved for 6 in terms of the known quantities Tys Oy and r. The result is:

6 =(1/2) arc tan [2r oy 0 /(0,2 -0, D)) . (11)

Now that ¢ is known, expressions for the unknown quantities oy’ and ay! in equation (7) are required.
Multiplying equations (9a) and (9b) together and taking expected values yields the following results:

2=0X2 00526 +2roy oy cos 6 sin @ +oy2 sin20 (12a)

0 r2=aX2 sin26 -2roy oy cos 6 sin 6 +oy2 cos20 . (12b)

y

Notice that o, and gy’ are now expressed in terms of known quantities and can be evaluated. Adding (12a)

to (12b) gives the following relation:

gx;2+oy12=aX2+Uy2 . (13)

If double angle formulae are substituted into (12a) and (12b) and the equations differentiated with respect
to 6 and the resulting derivatives set to zero, for both (12a) and (12b), equation (11) results. This means

that for the standard deviations o and ay of the rotated variates, extrema occur when x’ and y' are inde-

pendent. If x' corresponds to the probability major axis and y’ to the minor axis then the value oy’ is the
maximum standard deviation for any rotation angle and oy is a minimum.

From equation (11), 6 is known, and from two of the three equations (12a), (12b), and (13), o,

and oy are known. Each of the three parameters o7, Ty’ and 6 are known in terms of the desired parame-

ters gy, Ty and r. With this information, (x,y) can be calculated.

All required equations are now at hand, and the desired sequence can be generated. The algorithm
for generating the desired variate pairs is summarized below.
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1) Input desired value of the two means, two standard deviations, and correlation coefficient to the
program,

2) Use these values to calculate the rotation angle, using (11).

3) Calculate o, and oy using equations (12a) and (12b).

4) Generate two random numbers (uniformly distributed) uy, and uy.
5) Calculate x'’, and y'"’ from equation (2).

6) Calculate x', and y' from equation (7).

7 Calcﬁlate x and y from equation (8a) and (8b).

8) Add the desired mean values to x and y,

9) If another random number pair (x,y) is needed return to step 4; otherwise stop.

TEST OF THE ALGORITHM

The previously described algorithm was tested with the computer program described in.the
Appendix. The code was written for a Hewlett-Packard 1000 F Series computer. Results are summarized
in Tables 1 and 2. Table 1 compares the desired values of oy, Ty and r with those calculated for the

sequence. Each sequence consisted of 1000 number pairs. The error is quite small. The purpose of Table 2
is to show that as the size of the sample increases, the deviations from desired values decrease.

TABLE 1. COMPARISON OF STATISTICS OF BIVARIATE PAIRS WITH THE
DESIRED PARAMETER VALUES (N = 1000 FOR EACH CASE)

ay Sym oy oym I T Ar
1.25 1.2379 1.0 1.0002 0.25 0.2538 0.0038
1.25 1.2376 1.0 0.9996 0.50 0.5000 0.0000
1.25 1.2382 1.0 0.9979 0.75 0.7487 -.0013
1.50 1.4871 1.0 0.9998 0.25 0.2562 0.0062
1.50 1.4863 1.0 1.0001 0.50 0.5018 0.0018
1.50 1.4867 1.0 0.9984 0.75 0.7494 -.0006
2.00 1.9845 1.0 0.9993 0.25 0.2576 0.0076
2.00 1.9836 1.0 1.0002 0.50 0.5035 0.0035
2.00 1.9837 1.0 0.9990 0.75 0.7501 0.0001
3.00 2.9782 1.0 0.9990 0.25 0.2582 0.0082
3.00 2.9775 1.0 1.0002 0.50 0.5045 0.0045
3.00 29774 1.0 0.9994 0.75 0.7507 0.0007
4.00 3.9714 1.0 0.9989 0.25 0.2584 0.0084
4.00 3.9710 1.0 1.0002 0.50 0.5047 0.0047
4.00 3.9708 1.0 0.9996 0.75 0.7509 0.0009
5.00 4.9646 1.0 0.9988 0.25 0.2584 0.0084
5.00 4.9642 1.0 1.0002 0.50 0.5049 0.0049
5.00 4.9641 1.0 0.9996 0.75 0.7510 0.0010
10.0 9.9300 1.0 0.9988 0.25 0.2585 0.0085
10.0 9.9298 1.0 1.0001 0.50 0.5050 0.0050
L__IO'O 9.9298 1.0 0.9997 0.75 0.7512 0.0012




TABLE 2. CONVERGENCE OF STATISTICS TO DESIRED VALUES FOR
INCREASING NUMBERS OF VARIATES

N Aoy I Aoy ) l
10 0.7962 0.7700
100 -0.038 0.0794
1000 -.0164 0.0002
10000 ~.0096 0.0044

Figures 2 and 3 show interesting trends in the error of the correlation coefficient. In Figure 2 corre-
lation coefficient error Ar, which is the difference in the calculated correlation and the desired correlation,
is plotted versus the desired correlation coefficient. The error decreases from a maximum at r = O to near
zero at r = *1. This is for the case oy = 2, oy = 1. Figure 3 plots the correlation coefficient error versus

values of the ratio ax/oy. Each curve corresponds to a different value of the desired correlation coefficient,

1. The regularity of the curves depicted in Figures 2 and 3 was somewhat surprising at first glance, but a
relatively simple model was developed which explained the qualitative aspects of the plots.

Returning to the transformations (9a) and (9b), the value of the rotated correlation coefficient, r,,
is obtained by multiplying the equations together, taking expected values, and manipulating.

, sin 26 (0y2 - ox2)/2 toyoy cos 26
r= . (14)

Ux' O'yl

Values of g4 and oy are obtained from equations (12a) and (12b). The variation of 1’ with Oxs Oy 6, and

1 is shown in Figures 4 and 5. The value of the unrotated correlation coefficient, r, for each of the curves is
r' evaluated at 8 = 0. For each curve four zeroes of 1’ are seen, The value of 6 corresponding to the zero
closest to 8 = 0 is the value of 8 used in transformations (9a) and (9b). For a positive value of the correla-
tion coefficient, r, the closest zero corresponds to a positive value of 8. For a negative value of r, the
corresponding value of @ is negative. The four zeroes of t' are expected since the x’ axis will correspond to
the positive and negative major and minor axes of the probability ellipse for four different values of 6.

Looking at the curves of Figures 4 and 5 and paying particular attention to the zero-crossing behavior
of ', one might expect that the error in r may be related to the value of the derivative of r' at the origin.
The x'-y' axes are rotated by the angle to obtain the desired values of o, Ty and r. Some errors are involved

in the transformation and an error in 6 results in an error in r;i.e., r=dr'/dg A8. In this model Ar varies in
magnitude with dr'/d9 evaluated at the origin.

Differentiating equation (14) with respect to 6 and evaluating at § = 0 gives the following result:

dr

Tl 6=0=(0y/0x-ax/oy) (1-1%) . (15)

If the ratio oxloy is held constant, (15) can explain qualitatively the behavior depicted in Figure 2. The

maximum error occurs at r = 0, and minimum at r = *1 as shown.
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Figure 3 is not totally explained by the model, however. The sharp decrease of Ar near ox/ary =0
is in good agreement with the model, but as ”x/ay — oo the curves seem to level off approaching a constant

value. Equation (15) predicts that the error increases linearly with ox/oy. The reason for the discrepancy is
not known, but the actual behavior is better than predicted.
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Figure 2. Variation of the absolute error of the correlation coefficient (o, = 2, oy = .
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Figure 3. Variation of correlation error with ratio of standard deviations.
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Qualitatively the increase in Ar with decreasing r as shown in Figure 3 is in agreement with (15).
The ratios of corresponding values Ar (r = 0.25); Ar (r = 0.5); Ar (r = 0.75) are not in quantitative agree-
ment, however.

SUMMARY

An algorithm for drawing random number pairs from a bivariate normal distribution with desired
means, standard deviations, and correlation coefficient was described. The algorithm is efficient in the sense
that a sequence of uniformly distributed random number pairs is converted into a sequence of the same
number of bivariate normally distributed random number pairs. In other words, for each pair of random
numbers the algorithm generates a pair of bivariate normal random numbers.

A FORTRAN program was written to test the algorithm. The algorithm worked well, with some
small errors in the parameters. The regularity of the errors seems to discount the possibility that the errors
are entirely statistical in nature.

To better understand the errors, a simple model was devised which qualitatively explained the
error in the correlation coefficient. The model was in qualitative agreement with most aspects of the error,
and when the model was not in agreement, the actual behavior was better than predicted.
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APPENDIX

FORTRAN PROGRAM FOR GENERATING BIVARIATE
NORMAL RANDOM NUMBERS

The listing is of a FORTRAN program which generates bivariate normal random numbers. The
routine RMPAR is an HP RTE routine which is described in Reference 5. RMPAR passes as many as five
integer parameters to the program through the array IPAR. The calling sequence is

RU,BIVAR,IPRT1,IPRT2,NRV

where IPRT]1 is the list device where the statistical summary of the random number sequence is sent. IPRT2
is the list device where the random variates are sent, and NRV is the number of variate pairs generated. The
program is written for interactive input from a CRT terminal which is logical unit number 1.

System routine URAN generates uniformly distributed random numbers, and is described in Refer-
ence 6,
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